您好,欢迎访问无锡悦鑫工贸有限公司官网!
新闻资讯

服务热线0510-83766069

行业资讯

首页 > 新闻资讯 > 行业资讯

超精密加工的发展过程

作者:小编 发布时间:2021-01-11 10:31:28点击:

目前的超精密加工,以不改变工件材料物理特性为前提,以获得极限的形状精度、尺寸精度、表面粗 糙度、表面完整性(无或极少的表面损伤,包括微裂 纹等缺陷、残余应力、组织变化)为目标。


超精密加工的研究内容,即影响超精密加工精度的各种因素包括:超精密加工机理、被加工材料、超精密加工设备、超精密加工工具、超精密加工夹具、超精密加工的检测与误差补偿、超精密加工环境(包括恒温、隔振、洁净控制等)和超精密加工工艺等。一直以来,国内外学者围绕这些内容展开了系统的研究。超精密加工的发展经历了如下三个阶段。


1、20世纪50年代至80年代,美国率先发展了以单点金刚石切削为代表的超精密加工技术,用于航天、国防、天文等领域激光核聚变反射镜、球面、非球面大型零件的加工。


2、20世纪80年代至90年代,进入民间工业的应用初期。美国的摩尔公司、普瑞泰克公司,日本的东芝和日立,以及欧洲的克兰菲尔德等公司在政府的支持下,将超精密加工设备的商品化,开始用于民用精密光学镜头的制造。单超精密加工设备依然稀少而昂贵,主要以专用机的形式订制。在这一时期还出现了可加工硬质金属和硬脆材料的超精密金刚石磨削技术及磨床,但其加工效率无法和金刚石车床相比。


3、20世纪90年代后,民用超精密加工技术逐渐成熟。在汽车、能源、医疗器材、信息、光电和通信等产业的推动下,超精密加工技术广泛应用于非球面光学镜片、超精密模具、磁盘驱动器磁头、磁盘基板、半导体基片等零件的加工。随着超精密加工设备的相关技术,例如精密主轴部件、滚动导轨、静压导轨、微量进给驱动装置、精密数控系统、激光精密检测系统等逐渐成熟,超精密加工设备成为工业界常见的生产设备。此外,设备精度也逐渐接近纳米级水平、可加工工件的尺寸范围也变得更大,应用越来越广泛。随着数控技术的发展,还出现了超精密五轴铣削和飞切技术。已经可以加工非轴对称非球面等复杂零件。


相关标签: